IEEE Nanotechnology Materials and Devices Conference (NMDC)
IEEE
Program

Confirmed Plenary Speakers

Jesus del Alamo

Director of the Microsystems Technology Laboratories
Donner Professor and Professor of Electrical Engineering
Department of Electrical Engineering and computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA

 

 

 


Nader Engheta

2018 Nanotechnology Council Pioneer Award Winner

H. Nedwill Ramsey Professor
of Electrical and Systems Engineering
and
Professor of Physics and Astronomy
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Topic: “Near-Zero-Index Photonic Materials and Devices”

Speaker Biography:

Nader Engheta is the H. Nedwill Ramsey Professor at the University of Pennsylvania in Philadelphia, with affiliations in the Departments of Electrical and Systems Engineering, Bioengineering, Materials Science and Engineering, and Physics and Astronomy.  He received his B.S. degree from the University of Tehran and his M.S and Ph.D. degrees from Caltech. His current research activities span a broad range of areas including photonics, metamaterials, nano-optics, graphene optics, electrodynamics, imaging and sensing inspired by eyes of animal species, microwave and optical antennas, and physics and engineering of fields and waves. He has received several awards for his research including the 2017 William Streifer Scientific Achievement Award from the IEEE Photonics Society, the 2015 Gold Medal from SPIE, the 2015 Fellow of US National Academy of Inventors (NAI), the 2014 Balthasar van der Pol Gold Medal from the International Union of Radio Science (URSI), the 2017 Beacon of Photonics Industry Award from the Photonics Media, the 2015 Vannevar Bush Faculty Fellowship Award from US Department of Defense, the 2012 IEEE Electromagnetics Award, the 2015 IEEE Antennas and Propagation Society Distinguished Achievement Award, the 2015 Wheatstone Lecture in King’s College London, the 2013 Inaugural SINA Award in Engineering, 2006 Scientific American Magazine 50 Leaders in Science and Technology, the Guggenheim Fellowship, and the IEEE Third Millennium Medal.  He is a Fellow of seven international scientific and technical organizations, i.e., IEEE, OSA, APS, MRS, SPIE, URSI, and American Association for the Advancement of Science (AAAS).He has received the honorary doctoral degrees from the Aalto University in Finland in 2016, the University of Stuttgart, Germany in 2016, and Ukraine’s National Technical University Kharkov Polytechnic Institute in 2017.

 


Ian A. Young
Intel Senior Fellow,
Technology and Manufacturing Group
Director, Exploratory Integrated Circuits,
Intel,
Hillsboro, Oregon, USA

 

Topic: “Beyond CMOS Materials and Devices for Energy Efficient Computing”

 

 


Tony F. Heinz

Professor of Applied Physics and Photon Science at Stanford University, Stanford, CA USA
Associate Laboratory Director for Energy Sciences at the SLAC National Accelerator Laboratory.

Topic: “Optical properties of 2D materials and heterostructures”

Tony Heinz is a Professor of Applied Physics and Photon Science at Stanford University and the Associate Laboratory Director for Energy Sciences at the SLAC National Accelerator Laboratory. Heinz received a BS degree in Physics from Stanford University and a PhD degree, also in Physics, from UC Berkeley in 1982. He was subsequently at the IBM Research Division in Yorktown Heights, NY until he joined Columbia University in 1995 as a Professor of Electrical Engineering and Physics. At Columbia, he served as a Scientific Director of the Columbia Nanoscale Science and Engineering Center (NSEC) and of the Energy Frontier Research Center (EFRC). He was the President of the Optical Society of America in 2012. Heinz joined Stanford in 2015.

Heinz’s research has centered on the elucidation of the properties and dynamics of nanoscale materials primarily through the application of optical and laser techniques. His research on surfaces, interfaces, and nanoscale materials, including carbon nanotubes, graphene and other 2D materials, has been recognized by Optics Prize of the International Commission for Optics, a Research Award of the von Humboldt Foundation, the Julius Springer Prize for Applied Physics, and the Isakson Prize of the American Physical Society.

 


Joseph M. Luther

Senior Scientist,  National Renewable Energy Laboratory, Golden, CO, USA.

Topic: “Metal Halide Perovskites at the Nanoscale: high quality optoelectronic materials with unique phase properties”

 

The newly rediscovered perovskite semiconductor system has the potential to be extremely transformative for all optoelectronic devices, especially photovoltaics (PVs). Perovskite semiconductors of the form APbI3 where A is a large +1 charged cation, typically Cs, methylammonium, or formamidinium have had a huge resurgence among materials scientists for outstanding PV properties despite being overlooked for decades. Semiconductors containing the latter two A-site cations listed are hybrid organic-inorganic materials, and as such, are far less understood compared to conventional all inorganic or even organic material systems. Regardless of this spotty formal understanding, lead-halide perovskites have very rapidly been optimized to power conversion efficiency levels on par with all other materials even with extensive history of research. Perovskites show a unique tolerance to crystalline defects that cause trouble in most other semiconductors. Therefore the potential offered is that very high efficiency PVs can be fabricated in extremely fast and inexpensive ways, thus offering a revolution for the solar industry and a direct route toward producing the world’s energy with a simple and clean technology.  Long-term durability of the devices is the critical remaining challenge to be solved.1 Two examples of major instabilities in device performance are the volatility of the organic cation and the specific crystal habit in which the material embodies.

Nanoscale versions (often termed quantum dots (QDs)) of the all-inorganic metal halide perovskite (CsPbI3) tend to retain the desired cubic phase due to strain effects at the surface of the QDs whereas conventional films of the same material “relax” to an orthorhombic structure at room temperature. Therefore these QDs potentially solve both of the instability issues. The cubic CsPbI3 QD cells operate with a rather remarkable open-circuit voltage of >1.2 volts and have produced power conversion efficiencies over 13%.2,3 This customizable new nanomaterial system has incredible potential for many applications in optoelectronics, including photovoltaics, LEDs, displays and lasers. We describe the formation of α-CsPbI3 QD films with long range electronic transport that retain the high temperature phase in ambient conditions making up the active layer in optoelectronic devices. Perspectives on how this technology can become transformative will be discussed.

References

  1. A. Christians, P. Schulz, J.S. Tinkham, T.H. Schloemer, S.P. Harvey, B.J .Tremolet de Villers, A. Sellinger, J.J. Berry, J.M. Luther, Nature Energy, 2018, 3 (1), 68.
  2. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Science, 2016, 354 (6308), 92-95.
  3. M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski, L.M. Wheeler, P. Schulz, L.Y. Lin, M.C. Beard, J.M. Luther, Science Advances, 2017, 3 (10), eaao4204.

Speaker Biography:

Joseph Luther is a senior scientist at the National Renewable Energy Laboratory in Golden, CO, USA. He received his PhD in Physics from Colorado School of Mines in 2008 for his work on colloidal PbS and PbSe quantum dot solar cells for multiple exciton generation, where one photon can generate multiple electron hole pairs, thus leading to solar cells that can outperform the existing SQ limit of 32%. After postdoctoral training at UC Berkeley under mentor Paul Alivisatos, he rejoined NREL in 2009. He published over 80 peer-reviewed papers regarding solution processed solar cells. Current research focuses on perovskite solar cells and semiconductor nanocrystals.